

Status Report – Swift Creek Reservoir Watershed Master Plan

Watershed Model Update

Chesterfield County
Planning Commission
Work Session
February 20, 2007

Goals for Today

- Demonstrate the Following:
 - Independent Verification of TP Load to the Lake
 - Independent Verification of Runoff to the Lake
 - Accuracy of Reckhow's Lake Model for TP Conc.
- Present the Results of the Currently Zoned Load Calculations
- Discuss Next Steps

Load and Flow Verification

- TP Load Verification 1 Based on PLOAD Model
- TP Load Verification 2 Reservoir Mass Balance for TP
- Total Flow Verification Reservoir Water Balance

TP Load Verification 1 - PLOAD

- PLOAD Annual Pollutant Load Calculation
- Independent Calculation
 - Same Land Use and Impervious Values as P8
 - Other Variables Independent
- 1000 Realization of Model Runs
 - By varying the values of EMC's
 - By varying the fraction of runoff producing storms

TP Load Verification 1 – PLOAD

Year	P8 Annual TP Load (lb/yr)	PLOAD Annual Load (lb/yr)	Error
1999	18,030	16,198	11%
2003	23,017	26,404	-15%
2005	13,315	18,123	-36%

- Error varies from -37% to 11%
- 2 of 3 Years within the desired +/-20%
- But, 2003 and 2005 Under Predict with P8

TP Load (lb/year) in 1999

P Load (lb/year) in 2003

P Load (lb/year) in 2005

TP Load Verification 2 – Reservoir Mass Balance

$$V \cdot \frac{dP}{dt} = M_i - M_o - \phi$$

V = lake volume (10³ m³)

P = lake phosphorus concentration (mg/l)

 M_i = annual mass influx of phosphorus (kg/yr)

Mo = annual mass efflux of phosphorus (kg/yr)

annual net flux of phosphorus to the sediments (kg/yr)

- Change in Res. TP Mass = Total Mass In Total Mass In
- Daily Time Step
- 1,000 Variation Runs of the Mass Balance Model
 - Varying settling velocity
 - Varying TP Concentration
- Results similar to TP Load Verification 1

Which Load Verification is More Reliable?

- Mass Balance load based on the actual observed outflow, lake stage, and lake TP concentration data
- PLOAD based load based on event mean concentration values of various land uses from the literature.
- PLOAD based loads are hypothetical that serves as a guideline only and try to give an upper bound of the loads.

Which Load Verification is More Reliable?

- PLOAD neglects the treatment capacity of natural and man-made treatment facilities in the watershed such as natural ponds, settlement in the channel, and other BMPs.
- Mass-balance based approach accounts all the treatment facilities
- PLOAD is based on the watershed modeling approach whereas the Mass Balance is based on the modeling of TP in the Lake.

Which Load Verification is More Reliable?

Mass balance is realistic (actual) and PLOAD is hypothetical that works for a generalized watershed when no data is available.

Total Flow Verification — Reservoir Water Balance

- Total Inflow = Total Outflow Change in Volume
- Total Inflow = ∑ Runoff + Direct Rainfall
- Total Outfall = Overflow + Withdrawals + Evaporation
- Daily Time Step
- Data Rainfall, Evaporation, Reservoir Level

Total Flow Verification – Reservoir Water Balance

- P8 Over Estimated Flow by 38% for 2005
- Consistent with County's Annual Water Balance

Reckhow Model Results

Year	Observed In-Lake TP (mg/L)	In-Lake TP Based On P8 (mg/L)	Error
1999	0.030	0.039	28%
2003	0.032	0.036	13%
2005	0.021	0.027	62%

Reckhow Model Results

- Predicted phosphorus levels are within the uncertainty of the models
- Results can be used planning purposes

Currently Zoned Load Calculations Task

- Case 1 All Zoned Parcels
 - 2005 Land Use
 - Undeveloped Areas that are Zoned for Development
- Case 2 All Zoned Parcels and Known Requirements and Proffers
 - Case 1 Land Use
 - Adjustments made to P8 input based on water quality loading goals (0.22, 0.3, and 0.45 lb/ac-yr)

Currently Zoned Load Calculations Task Results

Year	Phosphorus Load (lb/yr)	Runoff Volume (ac-ft/yr)	Median In-Lake TP (mg/L)
Case 1	32,217 (20,900 - 35,400)	96,245	0.060
Case 2	25,078 (15,000 - 27,600)	94,366	0.051

- Both Cases Exceed 0.05 mg/L.
- Case 1 requires a reduction of 7,136 lb/yr
- Case 2 requires a reduction of 409 lb/yr

1999 Existing and Future Developed Impervious Area

2003 Existing and Future Developed Impervious Area

2005 Existing and Future Developed Impervious Area

Next Steps - Finalize Revised Watershed Management Plan

- Develop Percent Reduction Goal for Future
 Development and Determine Load Reduction
- Determine Retrofit Load Reduction Requirement
- Engage Powhatan County
- Develop Non-conventional Stormwater Treatment
 Design Standards and Design Review Guidance
- Study the Feasibility of Pollutant Trading Options
- Develop Watershed Load/Flow and Reservoir Prediction Tool

